Gulf of Mexico Corals as Monitors of Environmental Change

Amy J. Bratcher Department of Oceanography Texas A&M University

Objectives

- Part I Interdecadal climate variability
 - □ Reconstruction of PNA pattern using corals at the Flower Garden Banks National Marine Sanctuary
- Part II Carbon cycling
 - □ Air-sea interaction and pre to post-bomb transition
 - □ Interfacing with numerical modeling

- Impact of climate variations on tropical Pacific and North Atlantic well known
- Less well known but equally significant extratropical climate variations occur
- Flower Garden Banks (FGB) are uniquely situated to monitor extratropical climate
- Information about past extratropical climate (and possibly tropical climate) is preserved in skeletons of corals at FGB

Flower Garden Banks National Marine Sanctuary

Pacific/North American (PNA) Pattern

- Synchronous changes in the strength of the high and low atmospheric pressure centers over the North Pacific and North America
- Most pronounced during winter months
- Tremendous effect on winter climate in the Northern Hemisphere

PNA Positive Phase

Warmer and drier in the NW, colder in the SE

PNA Negative Phase

■ Cooler and wetter in the NW, warmer in the SE

The Jet Stream FGB ideally located

Why corals?

- Strong correlation between coral growth and water temperature
- Certain corals (e.g. Montastrea and Siderastrea) form distinct seasonal density bands
- Isotopic composition (¹⁸O/¹⁶O) of calcium carbonate coral skeletons reflects the temperature and oxygen isotopic concentration of the water
- Mg/Ca and Sr/Ca ratios of coral skeletons provide independent records of temperature
- Δ¹4C of skeletons provide radiocarbon records of Gulf of Mexico

Strategy - Part I

- Construct long proxy records of environmental conditions
 - □ Collect several ~2 meter cores of *Montastrea* and *Siderastrea* corals
 - □ Cut slab and x-ray cores
 - Count and measure annual and winter stress density bands
 - Analyze ¹⁸O/¹⁶O, Mg/Ca and Sr/Ca ratios of calcium carbonate samples removed from one core, constructing records with monthly resolution (≥12 samples/year)
 - □ Compare in situ temperature data with coral density, growth, and chemical composition (¹8O/¹6O, Mg/Ca and Sr/Ca ratios)
 - Construct histories of coral growth, local temperature and PNA pattern variations

Coral Species

Siderastrea siderea

Montastrea annularis

Strategy - Part II

- Carbon Cycling and air-sea interaction in the Gulf of Mexico
 - Use coral cores from three Caribbean/Gulf of Mexico sites
 - □ Sample annually running every other year from ~1875-1980
 - □ Air-sea CO₂ exchange
 - □ Use results in 1-D model

Δ ¹⁴C in Corals

Corals from three sites:

- Flower Garden Banks
- Veracruz, Mexico
- Cariaco Basin, Venezuela

Sampling the corals

Center for Accelerator Mass Spectrometry – Lawrence Livermore National Lab (CAMS-LLNL)

Preliminary ¹⁴C Data from Veracruz

Acknowledgments

- GREF Co-Mentors
 - □ Dr. Tom Guilderson, CAMS, LLNL
 - ☐ Dr. Karl Taylor, PCMDI, LLNL
- TAMU Advisor
 - □ Dr. Niall Slowey